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PROPAGATING THERMAL WAVES IN FORCE-COOLED 

SUPERCONDUCTING DEVICES 

W. B. BALD 
Department of Engineering Science, Oxford University, Parks Road, Oxford, England 

Abstract-The analytical approach of Greene and Saibel [3] to the problem of propagating thermal 
disturbances in force-cooled superconductors is extended to include all possible wave shapes. The pre- 
diction of these moving temperature boundaries is a necessary pre-requisite in understanding the stability 

characteristics of superconducting devices. 
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NOMENCLATURE 

cross-sectional area of conductor 
[cm21 ; 
cross-sectional are of helium flow 
path [cm2]; 
constants defined by equation (9); 
specific heat of conductor material 

[JkKl ; 
specific heat of helium at constant 
pressure [J/gK] ; 
length of propagating normal zone 
downstream from origin of co- 
ordinates [cm] ; 
differential operator; 
constants of integration; 
local surface heat transfer coef- 
ficient between conductor and 
helium coolant [W/cm2 K] ; 
joule heat generated in conductor 
per unit volume [W/cm31 ; 
thermal conductivity of conductor 
material [W/cm K] ; 
length of propagating normal zone 

[cm]; 
wetted perimeter of flow passage 
[cm] ; 
length of propagating normal zone 
upstream from origin of co-ordi- 
nates [cm] ; 
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Subscripts 

:, 
4 

propagating velocity of thermal 
wave [cm/s]; 
helium velocity [cm/s] ; 
Cartesian co-ordinates; 
constant exponents defined by 
equation (11) [cm- ‘1; 
valueofO,at< = +cc [K]; 
temperature rise of conductor 
above equilibrium state [K] ; 
temperature rise of helium coolant 
above equilibrium state [K] ; 
temperature difference between 
equilibrium thermal state and 
critical temperature of supercon- 
ductor [K] ; 
co-ordinate relative to propagat- 
ing wave [cm] ; 
density of conductor material 

k/cm31; 
helium density [g/cm”]. 

upstream region ; 
normal region; 
downstream region. 

1. INTRODUCTION 

SUPERCONDUCTING devices, which employ hol- 
low electrically stabilized composite conductors 
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cooled by the forced flow of helium, are finding 
increasing use in various areas of technology. 
These applications include high field magnets, 
power transmission cables, field windings for 
motors and generators, etc. 

The design of such devices for the thermally 
stable condition has been discussed elsewhere 
[l] where digital computing methods were 
used to make allowance for variations in 
helium physical properties with pressure and 
temperature. 

Composite superconductors, which include 
normal metals such as copper or aluminium 
to stabilize the current, and filamentary “in- 
trinsically stable” superconductors, are designed 
to eliminate or reduce electrical and thermal 
disturbances caused by flux jumping. External 
disturbances can occur, however, which can 
upset the thermally stable state discussed in [ 11. 

Keilin et al. [2] have discussed the problem 
of thermal instabilities by considering the 
stationary case where the thermal disturbance 
or normal region remains stationary relative 
to the helium coolant. This is equivalent to the 
case where aI = 0 in the analysis which follows. 

Greene and Saibel [3] considered the limited 
region of propagating thermal wave fronts 
which could support normal regions of finite 
length using the quasi-stationary approach 
developed by Rosenthal [4]. 

The present analysis extends the method of 
Greene and Saibel to examine the full spectrum 
of possible propagating thermal wave shapes 
in a force-cooled superconductor subjected 
to an arbitrary thermal disturbance. 

2. DERIVATION OF THE DIFFERENTIAL 
EQUATIONS FOR A MOVING HEAT SOURCE 

The theory of moving heat sources first 
developed by Rosenthal [4] will be used to 
assemble the basic differential equations for a 
thermal wave propagating in the direction of 
the helium fluid. 

Consider the co-ordinate system of Fig. 1 
which represents a point heat source moving 
with velocity ul, in the x direction. 

i 

Y 

FIG. 1 

After an interval of time r the origin 0’ 
will move to point 0 a distance uIt along the 
x axis. 

For uniaxial heat dissipation in the x direc- 
tion only, the basic heat conduction equation 
as defined by Jakob [5] is 

(1) 

where q”’ is the internal heat generated per unit 
volume. 

For an observer at point P of Fig. 1 moving 
with the heat source 0 we have the quasi- 
stationary state where 

v 
< = x - o,t. (2) 

Assuming k, = k is constant and representing 
the independent variables in expression (1) in 
terms of 5 

at a2t 
- p,c,u, z = kF + q”‘. 

L 
(3) 

Writing expression (3) in terms of the tem- 
perature rise 0, above the superconductor 
equilibrium temperature, and putting the in- 
ternal heat source q”’ = 12R which is the degree 
of joule heating in the normal state* it follows 
that 

* The condition for normality in a superconductor re- 
quires that 0, > 8, where 0, is the temperature increase 
required to reach the critical temperature for the super- 
conductor. 
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(4) 
which represent a propagating heat source in 
the su~rconductor are therefore 

The solution of equation (4) represents the 
temperature rise at any section of the super- 

kD2 + p,c,v,D - T 
) 

8, 
1 

conductor subjected to a moving point heat 
source 1’R at < = 0 without losses from the 
superconductor to the helium coolant. To 

+hse = --Pi? 
A* 2 

(7a) 

include the losses to the helium coolant. an 
additional term which represents the heat 

[P2C2A,(V, - v,)D + hqe, - h!e, = 0. (7b) 

exchange from the element hr shown in Fig. 2 The simultaneous linear differential equations 
must be included. (7) are identical with the equations used by 

The modified version of equation (4) which Greene and Saibel [3]. 

Helium 
- - "2 
flow 

FIG. 2. 

includes losses can then be written 

k d2e, de1 
2 + PlClVl z 
d5 

+m-T(8, -8,)-o. (5) 
1 

3. GENERAL SOLUTION OF THE ~~RE~~AL 
EQUATIONS 

To define the energy transfer between super- 
conductor and coolant completely, a second 
equation in addition to expression (5) is neces- 
sary to include the heat gained by the fluid. 

Equating the heat gained by a slug of fluid 
of length d< moving with a velocity v2 - vi 
relative to the moving heat source, to the heat 
lost by the su~rconductor, gives 

cz~2A2(v, - v,)d$ . d< = hqe, - e,) d< 

Multiplying equation (7a) by hS and equation 
(7b) by (kD2 + plclvlD - M/Al) to eliminate 
@i, produces 8, in the form 

D(AD2 + BD + C)e, = - 12RhS (8) 

where 

A = p,c,A,k(v, - oz) 

B = hSk + ,01p2cIc2A,v,(v2 - vl) 

c = hSp,c,v, - ~S~,c2642/4)(~2 - ~1). 1 

6) 

The general solution of equation (8) can be 
found by applying standard methods for linear 
equations with constant coefficients. 

i.e. 

i.e. B 
2 

= G + G2 eazs + G edzr 
1 3 

de2 
C2P2A2@2 - %)dX - hqe, - e,) = 0. (6) 

In operator form the differential equations 
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where 

Lx1 = - & + & [B2 - 4AC]3 

1 

(11) 

Lx2 = -&&P - 4/K]+. 

A, B and C are defined by expressions (9) 
and G,, G, and G, are constants ofintegration to 
be found from the boundary conditions. 

Substituting (10) in the second of equations 
(7) the temperature rise in the superconductor 
is given by 

A 
-- +khS . 1 (12) 

Equations (10) and (12) define the tempera- 
ture rise of the helium fluid and conductor, 
respectively, as a point heat source propagates 
throughout the superconductor length. 

4. LIMITING CONDlTIONS IMPOSED ON THE 
GENERAL SOLUTION 

Before suitable boundary conditions can 
be applied to find the constants in expressions 
(10) and (12) the signs for x1 and a2 must be 

known. It is seen from equations (9) and (ll), 
that the values of z1 and a2 depend on the 
magnitudes of the velocities u1 and u2. 

A closer examination of the values A, B and 
C shows that live different conditions exist 
which affect the signs for a1 and u2. These live 
limiting conditions are summarized in Table 1. 

Each of the live cases listed in Table 1 can 
in principle provide solutions for different 
propagating thermal wave shapes. Each case 
was examined in detail because of the un- 
certainties which surround the mechanisms 
causing a thermal wave to propagate at some 
velocity ul. 

5. BOUNDARY CONDITIONS AND THE NORMAL 
REGION 

If a flux jump, or some other source of electro- 
thermal disturbance, occurs at an arbitrary 
point 5 = 0 along the superconductor length 
causing it to go “normal” at that point, then 
joule heating of magnitude Z2R occurs due to 
the finite resistance R 

After some interval of time the normal 
region can expand, under certain special con- 
ditions to be discussed later, and the tempera- 
ture rise in the superconductor will develop 
into a profile of the form shown in Fig. 3. 

This profile was discussed in [2] for the 
stationary condition rll = 0 and examined in 

Table 1. 

Case no. Limiting condition A B c al a2 Remarks 

1 II2 = 0, 0 + + x. rx, D.E. (8) is 
D(BD + C)B, = - I’RhS 

+ + - + I% ’ Iall 

3 ,,=(l+@A)“, + + 0 0 -; 
D.E. is 
D’(AD + B)B, = -1’RhS 

0 ctl = -,/K/A) 
a, = +,/WA) 
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I 

Upstream region ; I Downstream 

&=-U c=o 

FIG. 3. 

detail by Greene and Saibel [3] for the propa- 
gating case. 

Whereas Keilin et al. [2] indicate in their 
Fig. 2b that the normal region is a discontinuous 
function, Greene and Saibel assume a con- 
tinuous function for the temperature distribution 
throughout the normal region. Although the 
origin of the thermal disturbance is located at 
some point, the nature of the energy spread 
would suggest that a continuous function 
throughout the normal region is the correct 
approach. 

The length of the normal region L = u + d 
requires that 8, > 8, where the critical tempera- 
ture rise 8, is a function of the magnetic field 
strength in the superconductor region. 

At sections upstream and downstream of the 
normal region where e1 < 6, the conductor 
remains superconducting and the 12R terms in 
equations (10) and (12) are consequently zero. 

The constants of integration G,, G, and G, 
appearing in equations (10) and (12) will be 
different for each of the three regions shown 
in Fig. 3 making a total of nine constants and 
therefore nine required boundary conditions. 

depending on which of the five cases of Table 1 
is being considered. 
at 5 = d, vu = w, 

k(~)~=k(~)~+I’R 
at 5=-u, (e,), = (e,), 

(13) 

e). =(%), 

k($)u=k($)N+12R. 

The remaining boundary conditionnecessary 
to completely define the problem is less straight- 
forward and is only required when discussing 
the solution for case No. 2 of Table 1 and it is 
due to Greene and Saibel [3]. This condition 
applies the conservation of energy principle 
to the complete system to find the value of L 
as a function of the asymptotic value A (i.e. 
A = - I’RhSL/C). 

Eight of the required boundary conditions 6. PROPAGATING WAVE SHAPES 

are straightforward describing the conditions 
at t = F cc and the matching of the tempera- 

In applying the boundary conditions (13) 

tures, temperature gradients and the jump in 
the constants of integration for the three 

heatflowat<= -uandt= +d. 
conductor regions shown in Fig. 3 will be 
identified as foltows 

These eight conditions are G1 G2 C; upstream region 

at (= *co, 6,=0 or s=O 
G;’ G!! Gy normal region 

G;“G;“G;” downstream region 
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Case 1. v, = v2 
The general solution for the temperature 

profiles in the coolant and conductor in this 
case is 

d1 = 0, = G, + G, e-‘C’B’S 

I’RhS B 
+ 

F-9 c c -. 
(14) 

Applying the boundary conditions (13) for 
the three regions to evaluate the constants 
G;G;G;’ . . . gives the complete solution 

(Or), = -. 
I’RchS d + 

A,Z’R(B/C - E) 

t’l(P1”1A, + P2’2A2) 

w, = 
!tpk+;_i’) 

+Jf 
I 

A,12R I’RhS ___ 
C ulblclA, + ~2~2~42) C 1 x ,-WW 

(@I), = [ A,I’R 

~I(P~“IA, + ~2’2A2) 

Z’RhS 

+ c 
(eWB)d _ 1) 1 

where the length of penetration of the normal 
region d, downstream from < = 0 is given by 

d= -Fin 

[C, ,2,s] 

[ 

A,I’R I’RhS ’ 

~,(PIcIAI + wzA,) C 1 

(16) 

The curves of Fig. 4 illustrate the results of 
applying the foregoing equations to the numeri- 
cal case of a superconductor proposed for use in 
a bubble chamber high field magnet. The 
temperature profile of the moving thermal 
front has been calculated for three different 
propagating velocities u1 = V2. 

The limiting cases for the shape of the moving 
wave front when v2 = 11, can be ascertained 
from equation (16). 

CB 
d = 0 when + = 

A,I’R 

(15) v~(PIc~AI + wzA2) 

or using C = hSp, c, L),. B = hSk 

d = 0 when 

VI = J( kA, 12R 

. B,p,c,b,c,A, + ~2czA2) ) 

(17) 

p, = 0.86 g/cm= I.9cm 

pz = 0.165 g/cm3 
c, = 0.12 x 1O-J J/gK 
c, = 2.69 J/gK 

A, = 3.62 cm* 

v, = vz= 81.7 cm/s 
A, = 0.71 cm2 

s= 2.99 cm 
k = 3 W/cmK 

d I-0.95cm 

h= 0.16 W/cm*K 
I= 8000A 

/2R = 0.0153 W/cm” 

1 8.44 K 

\ Critical temp. IOK 
-_-- 

C=O -----&. cm 

FIG. 4. Typical temperature profiles for case 1. Calculated 
for a superconducting winding for use in a bubble chamber 

high field magnet. 
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For the particular case illustrated in Fig. 5 
equation (17) gives a value of ur = u2 = 95 cm/s. 
At this velocity there will be no normal region 
preceding the moving wave front but an almost 
linear temperature gradient along the length of 

+ G! 5 k;tS I A e-(*hs’A’c) 
khS 

e e - CkhSlAE 

+ (1 ; AcQkhS) 
PO) 

the coil. 
Again by inspection of equation (16) 

ce I’RhS 
d+w as L--- 

B C 

(e,), = A + [(e2)Nf5=Lj - A] e(khS’A)‘L-r) 

8, - A 

+ (1 + Aa,/khS) 

which gives 
where 

G’I = 
e -A 

--+ 0, 
1 _ ealL 1 _ e-#lL 

For the data of Fig. 4, equation (18) gives a 
value of u1 = 85.9 cm/s at which velocity the 
complete superconductor goes normal. Equa- 
tion (18) is identical with the expression given 
by Greene and Saibel [3] for vr, = u2 for 
maximum propagation of the downstream edge 
of the normal region. 

(21) 

Case 2.v, B (1 + p,c,A,/p,c,A,)v, 
and the asymptotic value of 8, at 5: = + cc is 

The solution for this case, where a finite 
propagating normal region can be sustained 
along the superconductor, is due to Greene and 
Saibel [3]. 

Greene and Saibel’s solution is 

(e,), = e,ea,c The length of the normal propagating region L 

(e,), = G’,’ + G;’ emI + G;’ ea2r + G;t (19) 
is found from the expression 

(e,), = A + (e, - A)ea2(5-L). 
CrL 

%L 
l+A 1 _ eaZL 

The constant G, appears in the above solution 1 - eVaLL arL a2L 

by writing equation (12) in its most general 1 _ e-alL + 1 _ ea2L 

form. r 1 I 
x2 = _~ 

1 

l-t 
PzC2A21Q2 - Ulbl 

Ml - “2 1 hS ’ (23) 

(e,), = G’,‘(l - e-(khS’A)r) Limitations of the value of L 
As shown in Table 1 for case 2, CX~ is positive 

G;’ 

+ (1 + AcxJkhS) 
(eat’ _ ,-WW)S ) 

and x2 negative and consequently the right 
hand side of expression (23) is always positive. 

G; 
Solutions to equation (23) which yield L > 0 will 

+ (1 + Acx,/khS) (e 
Q5 _ e - (khS/A)< 

) p-4 therefore only exist if the left hand side of this 
equation is greater than zero. 
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Expanding the exponential terms on the 
LHS of equation (23) in power series shows that 

‘AIL 
1 _ ewalL 

Solutions 

%L l+- 1 _ ealL 1 +A %L %L 
.1 _ emalL + 1 _ eaZL 

z2 + 21 

as L -+ 0. 

of expression (23) which produce 
positive values for L therefore require that 

P2$42(~2 - ~&I 

hS 1 
x2 >- 

X1 + X2’ 
(24) 

Using the values for x1 and z2 given by 
equations (11) the condition (24) simplifies to 

Q1bz - VI) ’ 
khS 

w1~2~2A2’ 
(25) 

Condition (25) is a very important aspect of 
the Greene and Saibel[3] solution and provides 
the limitations for case 2 beyond which a finite 
propagating normal region cannot be sustained. 

Using the equality in equation (25), the upper 
and lower limits for finite L are 

02 v,=-+ 
2 - 1 (26) 

and for real solutions to exist the term under 
the square root in equation (26) must be 
positive, i.e. 

Outside the limits of expression (26) valid 
solutions exist for the case where 

,;,>(I +=&pl. 
Indeed such solutions must exist since propa- 

gation along the super conductor at a velocity 
vi above or below the limits of equation (26) 
must precede the appearance of a finite normal 
region. 

BALD 

For propagation without a finite normal 
region the upstream and downstream tempera- 
ture distributions for this case are 

(O,), = O,ea’t 

0, ea15 

@‘)’ = (1+ Ax,/khS) 

15 

e - (khSIA)S 

X + -1 

I 

ec e - (khSiA’S _ 

( ) l+F 
(29) 

1 

Because a2 is negative in this case, the second 
of equations (28) will give a value for ((I,), > 0, 
if the term alec - 12R/k is positive. This would 
violate the condition of no finite region of 
normality and consequently expressions (28) 
and (29) are only valid provided 

(30) 

If the coolant velocity exceeds the velocity of 
propagation of the thermal wave by an amount 
which makes a1 > 12RlkB, then the temperature 
excess region will disappear and the system 
will be fully stable. Figure 5 summarizes the 
results for the special case where u2 > (1 + 

p,c A,/p,c A,)u, in the limited regions 

khS 

P1ClPZCZA2 1 
and 

khS 1 P,c,P2c2A2 . 



PROPAGATING THERMAL WAVES 1871 

I’R 
‘=I= kK (@d 

FIG. 5. Propagating point source for case 2. 

As v1 increases x1 reduces in value and con- Case 3.v, = (1 + p,c,A,/p,c,A,)v, 
sequently the requirement of equation (30) Applying the conservation of energy principle 
will generally be satisfied by the latter of the throughout the superconductor length from 
above two regions. C: = -co to 5 = + co shows that no finite 

Variations of the propagating normal zone propagating length can exist in this case. 
length for case 2 are illustrated in Fig. 6. The complete solution for the propagating 

Critical A 
length 

L 

FIG. 6. Variations in propagnting normal region length for 
case 2. 
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point source in this case is 

(Q,L = dc 

(e,), = 8, - 2 . 

Case.4 v1 > vz 
The complete solution for this case is 

(O,)u = Oc - &(I”R + ka,O,)(l - en*<) 
2 

(O,), = 6, ea15 

(e2)u = (1 + Aq/khS) - 

(fq, = 
8, ealC 

(1 + Ax,,‘khS)’ 

W. B 

(31) 

32) 

(33) 

(34) 

Since aI is negative in this case, expressions The validity of equations (36) and (37) 
(33) and (34) are only valid provided therefore require the further constraint 

(cil( $ g. 
c 

(35) 

Case 5.v, < v2 < (1 + plc,A,/p,c,A,)v, 
As shown by Table 1 there are three possible 

solutions in this case depending on the relative 
values for BZ and 4AC. 

It can be shown, however, that in this case a 
propagating point source can only be sustained 
provided B2 = 4AC. 

The following solution is obtained in this case 

(or), = 0, 

@l), = 8, - ‘yiR(l _ ,-fW)S) (36) 

and the corresponding rise in helium coolant 
temperature is 

BALD 

AI’R 
@,), = ec + k(khS _ B/2) 

(8,), = 8, - qg 1 - 1 yc;;;;hs [ 1 
. (37) 

Expressions (37) are only valid provided B/2 > 
khS otherwise the coolant temperature on the 
upstream side of the moving point disturbance 
would be greater than the conductor tempera- 
ture. 

Using the value of B from the second of 
expressions (9) the same limiting condition 
expressed by equation (25) is obtained. 

Rearranging the limitation (25) 

Whereas the above requirement for u2 is always 
satisfied in case 2 it is not always satisfied in 
the present case where 

01 ’ & ,/WS). 
11 1 

(38) 

Summary of propagating thermal wave shapes 
Figure 7 summarizes the theoretically possible 

thermal wave shapes derived in the foregoing 
sections. These profiles have been drawn in 
ascending order of propagating velocity which 
is equivalent to travelling from left to right along 
the axis of Fig. 8. 

From a practical point of view it appears from 
Fig. 8 that only in cases 1 and 2 can finite 
regions of normality propagate along the con- 
ductor. The other propagating wave shapes 
require the continued existence of a point heat 
source which is inherently unstable and would 
normally disappear. 
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a, $ l”Rlk0, 

Case 3. v,= (I+$$. 

Case5. v,-cv2<(Its)v, 

B2 = 4AC 

i(khs) 
v, > - 

P,c,A, 

Case 1. Y,= v2 

Case 4. 

FIG. 7. Summary of propagating thermal shapes. 
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FIG. 8. Summary of variations in propagating normal region 
length. 

However, to travel from the condition of case 
2 to case 1, or vice versa, the profiles pertaining 
to the point source of heat will probably exist. 
In other words these source conditions will 
play a large part in determining whether or not 
significant thermal instabilities take place. 

Referring again to Fig. 7, initiation of a 
thermal wave front having the profile (@ can 
occur as the propagating velocity increases from 
rest to a value of 

2 khs 1 PlClP2C2342 . 

At this value a propagating normal zone starts 
to develop into the profile @ which initially 
increases in length and then contracts back to 
profile@at velocity 

VIA+ v2 

J-1 

2 khS 

2 2 1 PlclPlc,A, . 

As the propagating velocity ur continues to 
increase the thermal profile changes to Oat 
u 

6 

= v,/(l + ~~ciAr/~~c~A~)andthen to profile 
beyond this value. 

When the propagating velocity reaches the 
same velocity as the helium coolant a continuing 

trail of normality@will develop if this velocity 
is maintained. If, however, the thermal wave is 
accelerated through this condition, a point 
source having the profile @ will be established 
which disappears when a1 > I’Rfk0,. 

7. CONCLUSIONS 

Propagating point sources of “normal” energy 
can theoretically exist outside the limits of the 
finite propagating normal regions defined by 
Greene and Saibel. The initial velocity with 
which a thermal disturbance originates within 
a superconducting device is unknown at the 
present time. If, however, this disturbance starts 
from rest, or at some initial velocity outside the 
limits of finite normal length propagation, then 
the thermal wave shapes summarised in Fig. 7 
will exist during the transitionary periods. 

In the cases where a constant temperature 
rise 6, is predicted upstream or downstream of 
the propagating point source, the solutions 
require . that the conductor remains super- 
conducting everywhere except at the point 
source 5 = 0. Obviously any slight thermal 
disturbance superimposed on the moving ther- 
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ma1 wave could upset the quasi-stable wave in aspects of this problem and particularly with regard to his 

either direction. solution for case 2. 

Computer programmes exist [6] which calcu- 
Part of this work was performed under the auspices of the 

United States Atomic Energy Commission. 
late the propagating thermal wave shapes dis- 
cussed in this paper taking into account the 
variable properties of the helium coolant. Initial 
runs with these programmes show that finite 1, 
propagating regions can appear owing to 
changes in helium density with a corresponding 2. 
change in the coolant velocity. 

Experimental measurements on superconduc- 3 
tors with moving heat sources are necessary to 
extend the experimental work of Keilin er al. [2], 4. 
and verify, or otherwise, the propagating thermal 
waves predicted by theory. 5. 
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PROPAGATION D’ONDES THERMIQUES DANS DES DISPOSITIFS 

SUPRACONDUCTEURS 

Reaum&L’approche analytique de Green et Saibel pour le probltme de perturbations thermiques en 
propagation dans les supraconducteurs est Ctendue a toutes les formes possibles d’onde. L’estimation de 
ces limites thermiques mobiles est necessaire a la comprehension des caracttristiques de stabilitt des 

dispositifs supraconducteurs. 

FORTSCHREITENDE W;iRMEWELLEN IN ERZWUNGEN GEKtjHLTEN 
SUPRALEITENDEN ANORDNUNGEN 

Zusammenfassung-Die analytische Nlherung von Greene und Saibel[3] zum Problem der fortschreiten- 
den thermischen Storungen in erzwungen gekiihlten Supraleitern wird so ausgeweitet, dass sie alle m&lichen 
Wellenformen einschliesst. Die Voraussage iiber diese wandemden Temperaturgrenzen ist eine notwendige 

Voraussetzung zum Verstehen der Stabilitiitskriterien von supraleitenden Einrichtungen. 

PACIIPOCTPAHEHHE TEIIjIOBbIX BOJIH B CBEPXHPOBOflHIIHIX 
YCTPOHCTBAX C BbIHYmAEHHbIM OXJIAXAEHBEM 

AHHOTaqUsI-AHanllT1lrecIFlll MeTon Ipaua EI Cai%?ena [3] ~nri 3aAasu pacnpocTparieuua 
TeIIJIOBbIX B03Mj'II&?HIIi% B CBepXIIpOBOAH&iKaX C BbIHJWgeHHbIM OXJIaW~E!HHeM o606maeTcn 
Ha CJIJ'Wi BWB03MOH(HbIX $OPM BOJIHEJ. OIlpe~eJIeHRe IIOABHqHbIX TeMIIepaTypHbIX FpaHHu, 

RBJWIt?TCR HeO6XOAziMOi8 IIpe~nOCbIJIKOfi RJIJS IIOHIlMaHHFl XElpaKT PHCTRK YCTOti'JIlBOCTIl 

CRepXIIpOBO~~II~rlX VCTPOtiCTB. 


